Nonlinear Functions

Goal: Graph nonlinear functions

Vocabulary

Nonlinear function:

Any function whose graph is not a line or part of a line

Vertical line test:

A test used to tell whether the graph of a relation represents a function

EXAMPLE 1

Graphing a Quadratic Function

Graph the function $y = 3x^2$ using a table of values.

Solution

Make a table of values for the function. Then graph the ordered pairs and connect the points with a smooth curve.

1. Substitute x-values into $y = 3x^2$ to make a table.

Ж	У
-2	$3(\boxed{-2})^2 = \boxed{12}$
-1	$3(\boxed{-1})^2 = \boxed{3}$
0	$3(\boxed{0})^2 = \boxed{0}$
1	$3(\boxed{1})^2 = \boxed{3}$
2	$3(2)^2 = 12$

2. Graph the ordered pairs and connect the points.

EXAMPLE 2 Using the Graph of a Quadratic Function

Tiling Sam is installing ceramic tile flooring in a dining room. Ceramic tile costs \$4 per square foot. The function $y = 4s^2$ models the total cost of tiling a square floor with side lengths of s feet. Graph the function. Estimate the side lengths of the floor if the total cost of tiling is \$676.

Solution

1. Make a table of values for the function. Then make a graph.

S	У
0	$4(\boxed{0})^2 = \boxed{0}$
4	$4(4)^2 = 64$
8	$4(4)^2 = 576$
12	$4(\boxed{12})^2 = \boxed{576}$
16	$4(\boxed{16})^2 = \boxed{1024}$

2. Use the graph. It appears that the total cost of tiling is \$676 when the side length is 13 feet.

EXAMPLE 3 Graphing a Cubic Function

Graph the function $y = 0.25x^3$ using a table of values.

Solution

Make a table of values for the function. Then graph the ordered pairs and connect the points with a smooth curve.

Ж	у
-2	$0.25(\boxed{-2})^3 = \boxed{-2}$
-1	$0.25(\boxed{-1})^3 = \boxed{-0.25}$
0	$0.25(0)^3 = 0$
1	$0.25(\boxed{1})^3 = \boxed{0.25}$
2	$0.25(2)^3 = 2$

Guided Practice Graph the function using a table of values.

1.
$$y = -\frac{1}{3}x^2$$

2.
$$y = -2x^3$$

2.
$$y = -2x^3$$
 3. $y = \frac{3}{4}x^3$

Which black graph does not represent a function?

Multiple Choice Practice

EXAMPLE 4

B

Solution

Because no vertical line intersects the graphs in choices A, C, and

at more than one point, these graphs represent | functions |. A vertical

line intersects the graph in choice B at more than one point. So, the graph

does not represent a function.

Answer: The correct answer is | B |

188